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frames of reference, the laboratory system and the center-of-mass system. In
heavy-ion collisions, the two partners are ol'comparable mass; hence an ap-
preciable [raction of the total kinetic energy is tied up in translational motion
of the system as a whole, and the Lransformation from one system (o the other
has important consequences.

I the lollowing we consider only collisions which resul in the emission
of two fragments, as in elastic or inelastic scaltering, or simple transfer reac-
tions.

a Before Collision

Centre of Mass System

Laboratory System

Fig. 1.1. Velocities and angles in the laboratory and centre-of-mass frames of reference

The basic fealures are illustrated in Fig. 1.1. The two upper diagrams
represent the situation before the collision. In the laboratory system (left),
the target (mass number A,) is at rest, while the projectile (mass numiber A)
approaches with an initial velocity v_. The kinetic energy and momentum
are given by

B =3 403, Puy=md, v, an
where m is the nucleon mass and the significance of the other symbols is
obvious. In the centre-of-mass system (right) the iwo ions move with initial
velocities

A R 0.
and the kinetic energy and relative momentum are

B = 5 (A} + dpd) = Loz, (13)

Poy=m(Aw, + 4w)=pov,. (1.4)

4 1. Introduction

The symbol u denotes the reduced mass which is given by

= A, (1.5)

where A, may be termed the reduced mass number of the colliding system.

Another very useful quantity, which will frequently appear in this book,

is the laboratory energy ol the projectile divided by its mass number and
normally measured in MeV per nucleon:

Eaw _Eyn_m (1.6)

5 — — L
&= 5 Vaae

A, A

It should be noted that only the centre-of-mass values of energy and momen-
tum are availuble lor interactions between the two ions; they represent a
fraction ol the corresponding laboratory values equal to the ratio of reduced
mass to projectile mass.

The tower lefit diagram in Fig. 1.1 refers to the asymptolic motion of any
fragment with mass number A, emerging after the collision. Its final velocity
in the laboratory, v,,,, is the vector sum of its final velocity in the cenire-
of-mass system, v, and the translational velocity of the centre-of-mass
syslem with respect to the laboratory system, ve,. The magnitude of the
latter is given by

Vo = Uz = A, lﬂ:'jz Voo (1.7)

The emission angles of fragment 3 with respect to the incident beam direction,
9y(in the laboratory system) and @ (in the centre-of-mass system), are related
by

v, 8in @ sin ©

¢ = - 1.8
tan 9, v;€080 + v, cos O + p,’ a-8)

where y, = vy fv;.

In the special case of elastic scattering (or, more generally, in collisions with
negligible mass and energy transfer), the magnitude of the centre-of-mass
velocity is not chunged (v; = v,), and hence we obtain from (1.2), (1.7), and

(1.8)

= Ve Ay 1.9
Va v, 4, (1.9)

If further the two colliding ions are of equal mass, we have ya= 1,8, = 6/2.
In the general case of a two-body reaction with product mass numbers A,
and A,, the quantity y, is given by [Sc 55]
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P2 =+ A4, Een )%
=

where ) denotes the reaction Q value.
Next we consider scattering in the Coulomb field. Figure 1.2 shows the

Fig. 1.2. Coulomb trajectories in
the centre-of-mass sysiem

classical trajectories of two colliding ions in the centre-of-mass system. }
The distance of closest approach between the two centres of gravity, D, and
the scattering angle O are related by

D=a(1+csc.?.), (L11)

where the parameter a is defined as one-half the distance of closest approach ‘
in a head-on collision (& = 180°):

P Z,Z,e*

\
= iz

Together with the asymptotic wavelength of relative motion at large separa- |
tion, & = #/uv,., we obtain the Sommerfeld parameter |

2z
— 4z (1.13) |

4
x fiv,

n=

According to our discussion in the preceding section, large values of n cor-
respond to nearly classical motion. |
For a given pair of colliding ions, the Coulomb trajectories are completely
specified by the two kinematic parameters D and 6. However, it is often more
coavenient to use instead the two constants of motion: the total energy




6 1. lutroduction

Eoy =4 pv2, and the (classical) angular momentum L7% fhere and in
the following, we use L for classical and / for quantized angular momenta in
units of #; they are related by L* = I(/ + 1) = (I + })*]. The requirement of
energy conservation [rom infinity to the point of closest approach leads to the
foilowing relationship:

£ — VAV 5
D 2u D*’

(1.14)

which can be rearranged, with the help of the previously introduced Sommer-
feld parameter n (1.13), to yield

L} = kD (kD — 2u), (1.15a)
kD = n 4 (n* + L) (1.15b)

Equations (1.15) establish an important relationship between the distance of
closest approach and angular momentum for Coulomb trajectories, which
is often used in the semiclassical analysis of heavy ion scatiering.

Likewise we can express the scattering angle @ in terms of # and L; from
(1.11), (1.13) and (1.15 b), we obtain

Sin e __n _ n
" TR —n T (P F Iy

(1.16)
At some internuclear distance D = R, the nuclear interaction will become
effective. We define the Coulomb barrier E. as the asymptotic kinetic energy
in the centre-of~mass system at the (classical) threshold for nuclear reactions,
and the Coulomb interaction distance R. = roc (A4} + AY?) as the corre-
sponding distance of closest approach in the ubsence of nuclear interactions.
From (1.3) and (1.12) we obtain, with 2a = R¢ and E = E,

Ec:Ach:T, (1.17)

Z,Z,e*

which is, of course, just the Coulomb potential between two spherically sym-
melric, nonpenetrating charge distributions with total charges Z,e and Z,e
at a distance R.. Due to the diffuse nature of the nuclear surface and the
finite range of the nuclear interaction, R will in general be significantly larger
than the sum of the effective maiter radii of the colliding nuclei; moreover,
R will be larger than the actual distance of closest approach (R,,,) at & = &,
since we have neglected deflections by the attractive nuclear field in its defini-
tion. A quantitative discussion of the distances R¢ and R,,, will follow in
Sect. 3.3.

At bombarding energies above the Coulomb barrier, we have to distin-
guish two different kinematic situations, depending on whether the distance of
closest approach—assuming pure Coulomb scattering of point charges—is
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larger or smaller than R.. For large impact parameters, corresponding to
small scattering angles, we have Coulomb trajectories as shown in Fig 1.2.
For small impact parameters, on the other hand, the collision is dominated
by nuclear interactions and, in general, leads to inelastic processes. The
limiting case of a “*grazing collision” (D = R_) is of particular interest; [rom
(1.16) we obtain for the corresponding Coulomb scattering angle 6,

ip Bur _ _m &
8l T kR.-n 28—’ U8
In (1.18) we have made use of the identity
: s\ 1
kRe=2E = ch(i)’ , (1.19)
Ec e

where i is the Sommerfeld parameter taken at the Coulomb barrier. It is
often convenient to describe situations above the Coulomb barrier in terms
ol the patameters kR and ¢fe., rather than n, which is more appropriate for
pure Coulomb scattering. A good example is (1.18), which shows that the
grazing angle depends only on the ratio g/e.

The classical angular momentum L,, corresponding to the grazing trajec-
tory can be derived from (1.15a) and (1.19) as

12 = (kRC)z(] - is‘) s 4”5(5“ 1) (1.20)
C
We conclude that for any given pair of ions the grazing angular momentum
vaanishes at the Coulomb barrier (¢ = g.), where grazing implies a head-on
collision, and rises at higher energies proportional to (¢ — g.)'/%. For given
values of &z and & > &, the angular momentum L,, is proporiional to the
product 4,,R..
From simple geometrical arguments we can derive the momentum transfer
in an elastic grazing collision g,, as

— 2% sin Dor g te
g, = 2k sin —?_‘L = 2k % v—lz (1.21)

In contrast to the angular momentum, this quantity decreases with increasing
bombarding energy above the Coulomb barrier, as a cansequence of the
decrease in the scattering angle 6,,.

We conclude this discussion by noting that we have used the concept ol a
Coulomb interaction distance somewhat loosely, by calculating the Coulomb
barrier (1.17) and the grazing trajectory (1.18) with the same quantity R..
Since we are not interested in detailed predictions at this point, such a sim-
plified description is considered adequate.

In order to give an impression of the magnitudes involved, we have collect-
ed in Table 1.1 numerical values of various quantities discussed in this section




