Search for isospin effects on nuclear level density

A. Brondi1, A. Di Nitto1, G. La Rana1, R. Moro1, P.N. Nadtochy1, E. Vardaci1, A. Ordine1, A. Boiano1, M. Cinausero2, G. Prete2, V. Rizzi2, N. Gelli3 and F. Lucarelli3

1Università di Napoli and INFN Sezione di Napoli, Italy; 2Laboratori Nazionali di Legnaro (Padova), Italy; 3Università di Firenze and INFN Sezione di Firenze, Italy
Why is it important to study the level density?

Level density is a basic ingredient for x-section calculations.

Astrophysical processes

“Astrophysical Reaction Rates from Statistical Model Calculations”, ADNDT 75 (2000) 1-351

SHE’s production

\[\sigma_{ER} = \sigma_{capture} \cdot P_{CN} \cdot P_{surv} \]

Capture of two nuclei in the attractive potential pocket.

Probability of forming a compact compound nucleus (CN).

Survival probability against fission.

Fluctuation-dissipation dynamics: Fokker-Plank or Langevin equations

Evaporative process: Statistical Model
Study of isospin effects on level density through fusion-evaporation reactions

\[P(U_0, J_0, \varepsilon, l, U, J) \propto \rho(U, J) \cdot T_l(\varepsilon) \]

\[
\rho(U) = \frac{1}{12\sqrt{2}} \frac{1}{\sigma a^{1/4}} \frac{\exp[2\sqrt{a(U-\delta)}]}{(U-\delta)^{5/4}}.
\]

\[
\rho(U, J) = \frac{(2J+1)}{2\sigma^2} \exp\left[-\frac{(J+\frac{1}{2})^2}{2\sigma^2}\right] \rho(U).
\]

Angular momentum, Pairing & Shell effects ...

Isospin (?)

Isospin can affect two quantities:

- Level density parameter \(a \)
- Symmetry Energy
Effects on level density parameter a

Are the level densities for r- and rp-process nuclei different from nearby nuclei in the valley of stability?

S. I. Al-Quraishi, S. M. Grimes, T. N. Massey, and D. A. Resler

$$\rho(U) = \frac{\sqrt{\pi} \exp(2\sqrt{aU})}{12 a^{1/4} U^{-5/4}}.$$

Best fit: 241 nuclei
E_x up to 7 MeV
$20 < A < 110$ ENSDF

Form A: $a = \alpha A$
Form B: $a = \alpha A / \exp[\beta(N-Z)^2]$.
Form C: $a = \alpha A / \exp[\gamma(Z-Z_0)^2]$.

Strong support from recent L.D. calculations

Z-Zo dependence: better reproduction of data

Strong implications in nuclear astrophysics
Search for clues of isospin effects in 180 MeV 32S + 107Ag reaction

126 Si- CsI Telescopes (E-DE & PSD)

8πLP apparatus at LNL (Legnaro – Italy)
$^{32}\text{S} + ^{107}\text{Ag} \rightarrow E_{\text{LAB}} = 180 \text{ MeV}: \text{data against SM simulations}$

Code Lilita_N97; Optical model transmission coefficient; level density from Al-Quraishi et al.

Multiplicity distribution of alpha particles

No evidence of Z-Zo effects – No possible to discriminate between st. and N-Z

α energy spectrum

Al Quraishi parameters are not appropriate for this Ex (?)
Need of a systematic study with RIB at different E_x, N-Z, Z-Zo

SPES – SPIRAL2 can offer this opportunity:

- Observables: multiplicities, energy spectra, ER-lp angular correlations, ER yield.

- Reactions on 4He: low angular momentum effects, possibility to produce CN starting from low Ex (~ 20 MeV).

- Possible reactions:
 76Cu, 79Zn, 84Ge, 94Rb, 120Ag, 124Cd, 128In, 134Sn, 144Cs
 + 4He

$E_{lab} \sim 3 \text{ – } 10 \text{ MeV/A}; \ E_x \sim 20 \text{ – } 50 \text{ MeV}; \ \sigma_{\text{FUS}} \sim 0.2 \text{ – } 1 \text{ barn}$
SM predictions for n-rich nuclei

84Ge + 4He

- Increasing E_x
 - $E_x = 20$ MeV
 - $E_x = 60$ MeV

134Sn + 4He

- $E_x = 20$ MeV
ER yields at $E_x = 80$ MeV

84Ge + 4He

134Sn + 4He

N-Z Z-Zo
Why is it important to study the symmetry energy?

\[E_{\text{sym}} = b_{\text{sym}}(T)(N-Z)^2/A \]

- As a part of the nuclear Equation Of State it may influence the mechanism of Supernova explosion
- General theoretical agreement on its temperature dependence (LRT+QRPA vs. large scale SMMC)
- Effects enhanced by the intrinsic isospin dependence of \(E_{\text{sym}} \)

Fusion-evaporation reactions: \(E_{\text{sym}} \) affects the particle B.E.
Framework: Dynamical Shell Model

Hartree-Fock
Coupling single particle states to surface vibrations

Nucleon effective mass

\[m^* = \frac{m_k m_\omega}{m} \]

\[m_\omega(T) \quad 0 < T < 3 \text{ MeV} \quad -^{98}\text{Mo}, \quad ^{64}\text{Zn}, \quad ^{64}\text{Ni} \]

-LRT – QRPA

Decrease of the effective mass \(\frac{\partial}{\partial T} \)
Increase of \(E_{\text{sym}} \)

\[E_{\text{sym}}(T) = b_{\text{sym}}(T) \times \frac{(N-Z)^2}{A} \]

\[a \propto m^* \]

Good reproduction of data
Level density parameter $a(T)$

\[a = \frac{A}{k} \]

\[a(T) = a(T = 0) \frac{m_\omega(T)}{m_\omega(T = 0)} \]

Inclusion of E_{sym} and $a(T)$ in Lilita_N97
SM predictions for exotic nuclei (RIB + 4He)

Icp channels are open assuming Esym+a(T) effects
Energy spectra

$^{120}\text{Ag} + ^4\text{He}$

neutrons

protons

alpha particles

Very low cross section
n spectral shapes

Importance to select xn channels

The Yield of ER plays an important role
ER yields

120Ag E_sym + a(T)

Counts

N

Z

45 46 47 48 49 50 69 70 71 72 73 74

100000 10000 1000 100 10 1

120Ag Standard

Counts

N

Z

45 46 47 48 49 50 69 70 71 72 73 74

100000 10000 1000 100 10 1

Target

4-5

60cm
Experimental set-up

- 8πLP ER-lcp angular correlation
 - lcp energy spectra (?)
 - ER angular distribution

- Exogam (Agata, Vamos) + Diamant + NEDA
 - ER yields, n spectra, lcp spectra (?)

- LNL separator
 - ER angular distribution and cross section
Conclusions

- Level density of exotic nuclei can be strongly affected by the isospin degree of freedom, through the level density parameter a and the symmetry energy.

- Statistical model calculations show that evaporative light particles and evaporation residues are a good probe to study the level density of the exotic nuclei, as those produced by SPES and SPIRAL2.

- Future developments of the model combining the effects on the level density parameter a and on the symmetry energy. Use of more realistic level densities.