Unified studies of the structure changes and the nuclear reactions in 10Be

M. Ito and K. Yabana
Institute of Physics, University of Tsukuba

K. Kato
Div. of Phys., Grad. School of Sci., Hokkaido Univ.

K. Ikeda
Institute of physical and chemical research, RIKEN
Introduction

Light stable nuclei
Cluster Correlation is strong. \[^8\text{Be}=\alpha+\alpha,\ 20\text{Ne}=\alpha+^{16}\text{O},\ \text{etc} \]

Light N-rich nuclei (Be, Ne etc …) W. von Oertzen, N. Itagki etc…
Cluster Cores + valence Neutrons ? Various Structures

Our interests
Various structures
Enhancements
Unified treatment is important.
Probes
Reaction mechanism
Coexistence ??
Molecular Orbitals
Valence Bond ??
G.S. Ex.
Be isotope \((\alpha + \alpha + N + N + \ldots)\)

Present study

We study the structural change as well as reaction mechanism of \(^{10}\text{Be}\).

Molecular orbital

\[\pi^- \alpha \alpha \]

\[\sigma^+ \alpha \alpha \]

Low-lying States
Theory by Itagaki, Enyo, Arai...

High-lying States
Frer et al., Shimoura et al.

\[\text{Breakup reaction} \]

\[\text{Generalized Two-center Cluster model (PLB588)} \]

Should be treated in a unified manner!!

\[\text{Scattering} \]

\[\alpha + ^6\text{He} \]

\[^{10}\text{Be}_{\text{g.s.}} \]
Generalized Two-center Cluster Model (PLB588)

Microscopic cluster model

$^{10}\text{Be} = \alpha + \alpha + N + N : J^\pi = 0^+$

Total wave function

$$\Psi^{J\pi} = P^{J\pi} A \sum C_i \Phi_i$$

Basis : Atomic orbital (A.O.)

$\alpha : (0s)^4$

$$\Phi_i = \{ \alpha + 6\text{He}(0^+) \}$$

$0p_i$ A.O. ($i=x,y,z$)

Red Dots : [$\alpha + 6\text{He} (1) \}$ LJ

Blue Dots : [$5\text{He}(l_1) + 5\text{He} (l_2) \}$ LJ

Adiabatic energy surfaces ($J^\pi = 0^+$)

Excitation Energy (MeV)

Weak Coupling

$\alpha + 6\text{He}_2$.
Adiabatic surfaces \((J^\pi = 0^+)\)

Energy spectra \((J^\pi = 0^+)\)
Coexistence of atomic and molecular orbitals in ^{10}Be

$J^\pi = 0^+$

- $(\pi)^2$
- 2^+
- $\alpha + ^6\text{He}(2^+)$
- $\alpha + ^6\text{He}_{g.s.}$
- 0_2^+
- 0_3^+
- 0_4^+

$J^\pi = 1^-$

- $(\pi\sigma^+)$
- 1_2^-
- Continuum
- Inversion Doublet of $\alpha + ^6\text{He}_{g.s.}$
- 1_1^-

$J^\pi = 1^-$
Enhancements in inelastic scattering of $\alpha + ^6\text{He}$

$J^{\pi} = 0^+$ Resonance Poles

$\alpha + ^6\text{He}(0^+) \ ? \ \alpha + ^6\text{He}(2^+)$

$J^{\pi} = 1^-$ L-Z level crossing

$\alpha + ^6\text{He}(0^+) \ ? \ \alpha + ^6\text{He}(2^+)$

(- parity)

Doublet

(+ parity)

$L-Z$ level crossing
CDCC calculation of Nuclear breakup of ^{10}Be

$^{10}\text{Be} + ^{12}\text{C} \rightarrow (^{4}\text{He} + ^{6}\text{He})^0 + ^{12}\text{C}$ (E/A = 30 MeV)

Cross sections of Breakup

Energy spectrum in ^{10}Be (0$^{-}$)

Importance of atomic degree of freedom in reactions

$J^\pi = 0^+$

$J^\pi = 1^-$

α \rightarrow $^6\text{He}_{g.s.}$

Low-E Scattering

Pole

L-Z. Tr.

Continuum

Nuclear Breakup

Atomic degree of freedoms play very important roles in reaction process.
Summary and conclusion

1. Studies on light N-rich nuclei
 It is very important and interesting to study the nuclear structures as well as the nuclear reactions in light N-rich systems.

2. Our approach
 Generalized Two-center Cluster Model makes possible to do such unified studies. (AMD and Mol. orbital models are difficult !!)

3. Application to 10Be
 Structures: Atomic and molecular orbitals coexist in this system.
 Reactions: Atomic states are important in scattering and breakup.

Future plan

Extension to 12Be = $\alpha + \alpha + 4N$ is very important.

12Be ? 6He + 6He by M. Freer et al. (PRL99) and A. Saito at CNS.