Studies of fusion cross sections of Te and Sn isotopes with a 64Ni target at energies near and below the barrier

D. Shapira1, J. F. Liang1, C. J. Gross1, R. L. Varner1, J. R. Beene1, A. Galindo-Uribarri1, J. Gomez Del Campo1, P. E. Mueller1, D. W. Stracener1, J. J. Kolata2, H. Amro2, W. Loveland3 and K. L. Jones4

1 Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
2 Physics Department, University of Notre Dame, Notre Dame, IN 46556, USA
3 Department of Chemistry, Oregon State University, Corvallis OR 97331, USA
4 Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08856, USA

Our system for high efficiency studies of evaporation residues from reactions induced by heavy radioactive ion beams (120 \leq A \leq 150) on medium mass targets (50 \leq A \leq 100) [1] was used to measure evaporation residue production on several isotopes of Sn and Te bombarding a 64Ni target at energies near and below the coulomb barrier (Fig. 1). New data will be presented on a series of Te isotopes ranging from 124Te to 134Te as well as 134Sn colliding with a 64Ni target.

A semiclassical code, based on the WKB approximation, to calculate sub barrier fusion was developed. It calculates the probabilities for heavy ion fusion for each partial wave separately. Barrier distributions are folded with the transmission factors to account for inelastic excitation and a formalism to deal with neutron transfer, based on a proposed treatment introduced by Zagrebaev [2], was implemented. This code is used to study the role of neutron excess, neutron binding energies and the probabilities for neutron transfer on the sub barrier fusion cross sections for reactions induced by heavy neutron rich nuclei.

![Figure 1: Evaporation residue cross sections for 124Sn, 134Te and 132Sn](image)

References