Reactions induced by 18 MeV \(^6\)He beam on \(^6\)Li, \(^7\)Li and \(^{12}\)C

M. Milin\(^1\), S. Cherubini\(^2\), T. Davinson\(^3\), A. Di Pietro\(^3\), P. Figuera\(^4\), Đ. Miljanić\(^1\), A. Musumarra\(^2\),
A. Ninane\(^2\), A.N. Ostrowski\(^3\), M.G. Pellegriti\(^4\), A.C. Shotter\(^3\), N. Soić\(^1\), C. Spitaleri\(^4\), M. Zadro\(^3\)

\(^1\) Ruđer Bošković Institute, HR-10002, Zagreb, Croatia
\(^2\) Institut de Physique Nucléaire, Université Catholique de Louvain, B-1348, Louvain-la-Neuve, Belgium
\(^3\) Department of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
\(^4\) INFN - Laboratori Nazionali del Sud and Università di Catania, I-95123, Catania, Italy

The \(^6\)He nucleus with its exotic structure [1] has been studied extensively in last years with \(^6\)He radioactive beams, yielding different interesting results. We have studied the \(^6\)He scattering and reactions on \(^6\)Li, \(^7\)Li and \(^{12}\)C using a 18 MeV \(^6\)He beam. The measurements were performed at the radioactive beam facility in Louvain-la-Neuve, Belgium. Outgoing charged particles were detected in three large silicon strip detector arrays covering polar angles 4°-12°, 20°-65° and 115°-160° (the total solid angle was \(\Delta \Omega \approx 4 \) sr). Elastic and inelastic scatterings, transfer and compound nucleus reactions, quasi-free scattering and sequential decay processes in three and many-body reactions were observed and results concerning both nuclear structure and reaction mechanism were obtained.

Present results [2] for the \(^6\)He elastic scattering on all three targets used are in fair agreement with the optical model predictions using the potentials found in the analyses of \(^6\)Li scattering on the same nuclei and at similar energies. However, non-negligible differences are visible and the \(^6\)He scattering is better described with more sophisticated models, like the four-body continuum-discretised coupled-channel calculation given in Ref. [6] where influence of the \(^6\)He Borromean structure is taken into account.

A variety of transfer reactions was also measured; partial angular distributions were obtained and analysed within the DWBA framework. An example is the \(^6\)He\(^{+}\)\(^6\)Li\(\rightarrow\alpha\)\(^9\)Li reaction in which both direct transfers, of \(2n \) and \(d \), may contribute. The \(\alpha \)-particle pick-up from \(^6\)Li, \(^7\)Li and \(^{12}\)C nuclei forming different states in \(^{10}\)Be has been observed. Large values of \(\alpha \)-spectroscopic factors for some of the states indicate their well developed \(\alpha\)\(^6\)He cluster structure.

Several states of \(^{10}\)Be and their \(\alpha\)\(^6\)He decay were strongly observed [3] in the sequential reactions, \(^6\)He\(^{+}\)\(^6\)Li\(\rightarrow\alpha\)\(^9\)Li and \(^6\)He\(^{+}\)\(^{12}\)C\(\rightarrow\alpha\)\(^9\)He and \(\alpha\)\(^{10}\)Be. These findings support the existence of molecule-like structures in \(^{10}\)Be and of a rotational band with a very large moment of inertia [4]. Similar structures were found for \(^{14}\)C from the \(^6\)He\(^{+}\)\(^{12}\)C\(\rightarrow\alpha\)\(^9\)Be and \(^{12}\)C reaction [5].

The two-proton pick-up reaction (\(^6\)He, \(^8\)Be), observed here for the first time, was found to be a potentially very useful spectroscopic tool [7]. The first experimental results are obtained for this reaction on \(^{12}\)C, \(^{16}\)O and \(^{19}\)F nuclei (present in the LiF targets used). The measured angular distributions for the \(^{12}\)C(\(^6\)He, \(^8\)Be) reaction show clear signature of a direct process.

Quasi-free scattering of fragile \(^6\)He nucleus on deuteron and \(\alpha \)-particle clusters in \(^6\)Li was also observed, as well as population of boron isotopes through the \(^6\)He\(^{+}\)\(^6\)Li compound nucleus reactions.

Obtained results indicate that the \(^6\)He beam is an excellent choice for the study of light exotic nuclei. Final results of all observed phenomena will be summarised. Planned measurements of the \(^6\)He\(^{+}\)\(^{14}\)C reactions (beam energy 35 MeV) will also be discussed.

References