U(3) and Pseudo-U(3) Symmetry of the Relativistic Harmonic Oscillator

Joseph N. Ginocchio

M SB283,TheoreticalDivision,LosAlamosNationalLaboratory,LosAlamos,NewMexico 87545,USA

As is well-known, the non-relativistic spherical harmonic oscillator has degeneracies in addition to those due to rotational invariance. The energy spectrum depends only on the total harmonic oscillator quantum number \(N = 2n + \ell \), where \(n \) is the radial quantum number and \(\ell \) is the orbital angular momentum. Hence the states with \(\ell = N, N - 2, \ldots, 0 \) or 1 have the same energy. These degeneracies are produced by an U(3) symmetry [1]. This U(3) symmetry has been influential in connecting the shell model with collective motion [2]. Also the energy does not depend on the orientation of the spin and hence the non-relativistic harmonic oscillator has a spin symmetry as well.

Since relativistic models of nuclei are now so prevalent [3], we can ask if U(3) symmetry resides in the relativistic harmonic oscillator. Indeed the Dirac Hamiltonian, \(\hat{H} \), for which the scalar, \(V_S(\vec{r}) \), and vector, \(V_V(\vec{r}) \), potentials are equal and harmonic has been solved analytically and is invariant under a spin symmetry [4, 5]. Just as for the non-relativistic harmonic oscillator, the spherically symmetric relativistic harmonic oscillator energy spectrum depends only on the total harmonic oscillator quantum number \(N \), although the energy spectrum for the relativistic harmonic oscillator spectrum in general does not have a linear dependence on \(N \) as does the non-relativistic harmonic oscillator. This suggests that the relativistic harmonic oscillator does have an U(3) symmetry. If this is the case, the question is: what are the relativistic generators? In this talk we shall show that there is indeed a U(3) symmetry and we shall derive the generators which commute with \(\hat{H} \) [6].

Likewise, we show that a Dirac Hamiltonian, \(\tilde{H} \), for which the scalar, \(V'_{S}(\vec{r}) \), and vector, \(V'_{V}(\vec{r}) \), potentials are equal but opposite in sign and harmonic has a pseudospin symmetry and a pseudo-U(3) symmetry [4, 5].

References