The measured properties of the Giant Dipole Resonance (GDR) in hot rotating nuclei are successfully described with the model of Thermal Fluctuations, even though there are still some open problems especially at low (T<1.2 MeV) and at high (T>1.2 MeV) temperatures. Recent measurements have been performed using symmetric (400 MeV, 500 MeV 64Ni + 68Zn) and asymmetric (250 MeV 16O + 116Sn) mass entrance channel reactions to form 132Ce compound nucleus at different excitation energies. Gamma-rays and Light Charged Particles (LCP) have been measured in coincidence with Evaporation Residues. Emission mechanism of the LCP depending on the mass entrance channel and results of the Full Width Half-Maximum (FWHM) of the GDR as a function of nuclear temperature will be discussed.