Yrast structure of neutron-rich 51Ca

1 Institute of Nuclear Physics, PAN, Kraków, Poland, 2 Argonne National Laboratory, Argonne, IL, USA, 3 INFN, Laboratori Nazionali di Legnaro, Italy, 4 University of Aizu, Japan, 5 Dipartimento di Fisica dell’Università di Padova, Italy, 6 Michigan State University, MI, USA, 7 INFN, Sezione di Padova and Università di Padova, Italy, 8 University of Tokyo, Japan, 10 Ruder Bošković Institute, Zagreb, Croatia, 11 INFN, Sezione di Napoli, Italy

Around doubly-magic 48Ca, the neutron $p_{3/2}$, $p_{1/2}$ and $f_{5/2}$ orbitals are significantly separated in energy. As evidenced in earlier studies, a $N=32$ subshell closure in neutron-rich nuclei occurs [1-3], reflecting the presence of an energy gap between the $\nu p_{3/2}$ orbital and the two other neutron states. This closure disappears when going towards the stability line due to the strong proton $\pi f_{7/2}$ - neutron $\nu f_{5/2}$ monopole interaction, primarily governed by the tensor force. Such interaction causes a decrease in energy of the $\nu f_{5/2}$ single-particle orbital with respect to the $\nu p_{3/2}$ and $\nu p_{1/2}$ levels as protons are added to the $\pi f_{7/2}$ shell [4,5]. It has been shown that the magnitude of this decrease is high enough to reduce a possible second gap, i.e., between the $\nu p_{1/2}$ and $\nu f_{5/2}$ states, in the Ti and Cr isotopes [6-8]. In Ca nuclei, however, the $\nu p_{3/2}$, $\nu p_{1/2}$ – $\nu f_{5/2}$ splitting may be sufficient to produce a subshell closure also at $N=34$, but this feature is difficult to detect, as the states involving the $\nu f_{5/2}$ orbital in such species like $^{51-54}$Ca are hard to reach.

We investigated the yrast structure of 51Ca by analyzing data from two complementary experiments. In the first measurement, γ-γ coincidence events, from neutron-rich species produced in deep-inelastic collisions of a 48Ca beam on a thick 238U target, were collected with the Gammasphere array at the Argonne National Laboratory. The production rate of the 51Ca nucleus was, however, too low to locate unambiguously new γ rays that weakly appeared in coincidence gates on the known (from the 51,52K β-decay studies [9]) groundstate transitions in 51Ca. In the second experiment the same system was investigated by employing the PRISMA spectrometer coupled with the CLARA γ-ray multi-detector array at the INFN, LNL Legnaro. A γ-ray spectrum from CLARA, gated on the 51Ca products, showed a series of lines clearly belonging to 51Ca. Out of those, three γ rays were known from the β-decay study [9]. Subsequent analysis of γ coincidence data taken with Gammasphere allowed us to establish coincidence relationships between the observed lines and to construct an extended level scheme for 51Ca. Of special interest is a state located at 4320 keV with a tentative spin-parity assignment of $9/2^-$ arising mostly from the $\nu p_{3/2}^2 f_{5/2}$ configuration, which involves an $f_{5/2}$ neutron. The energy of this state can be described quite well by shell-model calculations assuming a sizable energy gap between the $\nu p_{3/2}$ and $\nu f_{5/2}$ neutron orbitals at $Z=20$.

Supported through EURONS (European Commission contract no. 506065), the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 and by Polish Scientific Committee Grant No. 1PO3B-059-29.