High spin states of 167Tm were populated in the fusion of 55MeV 7Li ions with a 164Dy target. The GASP γ-detector array at the INFN Laboratory, Legnaro, Italy was used for this work. The present data has allowed the yrast decay sequence of 167Tm to be seen to spin $61/2$ \hbar. The $1/2[411]$ ground state band has been extended to $51/2$ \hbar and the $7/2^+[404]$ and $7/2^-[523]$ bands have been extended to spin $43/2^+$ and $39/2^-$ respectively.

The experiment conducted at LNL was designed to study the incomplete fusion of 7Li ions with 164Dy, yielding neutron-rich Er isotopes around mass 166. An offshoot of the experimental data was the production of 167Tm in the fusion-evaporation reaction involving 4n evaporation.

EXPERIMENTAL RESULTS

The Tandem-XTU accelerator was used to accelerate 7Li ions to 55MeV. The isotopically enriched 164Dy target was of thickness 3.5 mg·cm$^{-2}$. The fusion evaporation reaction yielded a few exit channels of which 165,166,167Tm were populated by the evaporation of six, five and four neutrons respectively, with the 4n channel yielding the most new data. The high efficiency and resolving power of the GASP multi-detector γ-ray array yielded good statistics. The cross section for the 4n reaction channel leading to 167Tm was ~20mb corresponding to ~5x10^9 $\gamma\gamma\gamma$ events. The trigger conditions for an ‘event’ corresponded to two or more unsuppressed Ge signals and two or more BGO inner-ball element signals. The data were sorted into a $\gamma\gamma\gamma$ cube and analysed using the RADWARE analysis package.

Prior to the current (7Li, 4n) experiment, the 167Tm nucleus has been studied by Olbrich et al [1] (using the 165Ho(α, 2n)167Tm reaction) in which the $1/2^+[411]$, $1/2^+[541]$, $7/2^+[404]$ and $7/2^-[523]$ bands were all extended to spin $31/2^+$. More recently Jensen et al [2] have studied the 124Sn(48Ca, p4n)167Tm fusion evaporation reaction in which the $\pi h_{9/2}[541]$ ($\nu l_{13/2})^2$ decay sequence was strongly populated and the favoured signature ($\alpha=1/2$) was extended to spin $61/2^+$ (tentatively to $65/2^+$). The signature splitting in this band is large and the $\alpha=-1/2$ signature is consequently very weakly populated.

In the present work, rotational sequences based on the $1/2^+[411]$, $7/2^+[404]$ and $7/2^-[523]$ Nilsson states have been extended to high spin, figure 1. The $1/2^+[541]$ band was identified to spin $61/2^+$ in confirmation of previous work. The $\alpha=-1/2$ signature of the $1/2^+[411]$ ground state band has been extended by five transitions to spin $51/2^+$ and its signature partner to spin $41/2^+$. The $7/2^+[404]$ band has been extended to spin $43/2^+$ by adding three new γ-rays to the $\alpha=1/2$ signature and the $\alpha=1/2$ signature has had two new levels added to take it to spin $37/2^+$. The $7/2^-[523]$ band has had two new transitions added to both signatures, increasing the band to spin $39/2^-$. A comparison of the experimental routhians and alignments with the results of Cranked Shell Model calculations is currently under way and a paper is being prepared for publication.

REFERENCES

We acknowledge the EC financial support under contract number HPRI-CT-1999-00083.