Laser accelerated ions and their potential for therapy accelerators

I. Hofmann, GSI Accelerator Department
HIAT09, Venezia, June 8-12, 2009

1. Introduction to p driver parameters
2. Proton therapy accelerators
3. Beam quality source-collimation-accelerator
 - PHELIX-GSI experiment
 - scaling laws
4. Impact on accelerator scenarios
5. preliminary conclusions

co-workers: A. Orzhekhovskaya and S. Yaramyshev (GSI)
 M. Roth (TU Darmstadt), M. Droba (U Frankfurt)
1. Introduction to p driver parameters

What are lasers competing with?

SNS Accelerator Complex

Front-End:
Produce a 1-msec long, chopped, H- beam

Accumulator Ring:
Compress 1 msec long pulse to 700 nsec

2.5 MeV LINAC

1000 MeV

Current

945 ns

Chopper system makes gaps

Liquid Hg Target

I. Hofmann HIAT09
Injector Chain: New Proton Linac for FAIR at GSI

Crossed-bar H-Structure

- Beam Energy: 70 MeV
- Beam Current: 70 mA
- Protons / Pulse: $7 \cdot 10^{12}$
- Pulse Length: 36 µs
- Repetition Rate: 4 Hz
- Rf Frequency: 352 MHz

(Uinv. Frankfurt U. Ratzinger)
Heidelberg Ion Therapy Facility
(HIT - accelerator built by GSI, fully operational end of 2009)
Summary on Proton Drivers

What can conventional proton accelerators achieve? (some examples)

<table>
<thead>
<tr>
<th>Facility</th>
<th>MeV</th>
<th>p/sec</th>
<th>p/ spill or micropulse</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNS Oakridge (Spallation Neutron Source)</td>
<td>1000</td>
<td>6×10^{15}</td>
<td>$2 \times 10^9/10$ns</td>
</tr>
<tr>
<td>FAIR p driver linac (→ antiproton facility)</td>
<td>70</td>
<td>$\sim 10^{13}$</td>
<td>$2 \times 10^9/10$ns</td>
</tr>
<tr>
<td>Proton therapy (typical)</td>
<td>~ 250</td>
<td>$\sim 10^{10}$</td>
<td>$5 \times 10^{10}/10$s spill</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\sim 5 \times 10^7/\text{voxel (100 Hz)}$</td>
</tr>
</tbody>
</table>

→ Laser p/ion acceleration may be competitive in the area of therapy

<table>
<thead>
<tr>
<th>Facility</th>
<th>Beam power (in photons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNS</td>
<td>1 MW</td>
</tr>
<tr>
<td>FAIR</td>
<td>100 W</td>
</tr>
<tr>
<td>HIT</td>
<td>0.2 W</td>
</tr>
<tr>
<td>5 Hz PW laser system</td>
<td>150 W</td>
</tr>
</tbody>
</table>

⇒ efficiency of "photons into usable protons/ions" crucial !!
(Example: in GSI-PHELIX experiment $\sim 3 \times 10^{-5}$)
2. Proton/Ion Therapy Accelerators

two (theoretical) options:
laser + post accelerator - laser to full energy

A. Laser acceleration replacing "injector linac" + conventional post-accelerator (linac/circular)

B. Full laser acceleration \(\rightarrow \) p directly to 250 MeV or C to 350 MeV \(\rightarrow \) transferred to patient
Summary on issues in proton therapy following Linz & Alonso PRSTAB10, 094801 (2007):

<table>
<thead>
<tr>
<th>Conventional (Cyclotron, Linac+Synchrotron)</th>
<th>Laser Accelerator</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Beam Energy 200 – 250 MeV</td>
<td>in theory possible</td>
</tr>
<tr>
<td>2. Energy variability "+" in synchrotron</td>
<td>? demanding</td>
</tr>
<tr>
<td>3. ΔE/E ~ 0.1%</td>
<td>? demanding</td>
</tr>
<tr>
<td>4. Intensity 10^{10} /sec</td>
<td>10^9/10^8 at 10/100 Hz</td>
</tr>
<tr>
<td>5. Precision for scanning "+" in synchrotrons</td>
<td>? large Δp/p</td>
</tr>
</tbody>
</table>

Linz & Alonso didn't quantify their highly critical arguments against laser acceleration!
3. Beam quality source-collimation-accelerator

1. The production phase space is extremely small – consequence of small \(\mu \)m size focal spot and <ps time duration – often "sold" as attractive feature of laser acceleration

2. Can we take advantage of the extremely small production phase space?

3. No, it won't survive collection and following transport!

Single particle effects degrading quality:
- chromatic aberration (second order effect): \(\delta x \sim x' \delta p/p \)

yet unexplored and open issues:

Collective effects:
- proton + neutralizing electron space charge at source - under study
 (separation of p and e\(^-\) by solenoid B field)
- proton beam space charge further downstream - appears controllable
 ("geometric" aberration by nonuniform space charge)
In 2008 demonstrated first time:
• 170 TW power
• 700 fs pulse length (120 J)
• novel copper focusing parabola
• spot size 12 X 17 µm (FWHM)
• Intensity: ~ 4 x 10^{19} W/cm²

EXPERIMENT: Laser Ion Acceleration (TUD - GSI)

Goal:
Collimate an intense, laser generated proton beam using a pulsed solenoid magnet → transfer to conventional accelerator optics

(Simulation CST-Studio, I. Albers, TUD)
Results of the first PHELIX experiment on laser proton acceleration

- Excellent laser beam quality
- Ion energy comparable with other systems
- Ion number as calculated
- All on the very first shot!! (further optimization pending)

Setup to test proton production

\[N_0 = 1.52 \times 10^{13} \]

8x10^{10} protons in \(\Delta E/E = +/- 0.04 \)
Chromatic effect blows up integrated emittance from bunch head to tail – common collimation problem
solenoid focusing: $\Delta f/f \sim 2 \Delta p/p$

10 MeV protons produced at 20° opening cone
- modeled $\Delta E/E = +/-0.04$ by beams of 9.6 ... 10.4 MeV to describe chromatic effective emittance $\sim x´_{ini} \Delta p/p$
- much enlarged "effective spot"
- initial emittance < 1 mm mrad replaced by "effective emittance" 240 mm mrad

Effective spot with enlargement to: 12mm x 20mrad=240 mm mrad
need to reduce initial cone angle
Detailed tracking simulation with DYNAMION* code (quadrupole channel)

- reduced cone angle from 22° to 2.5°
- confirms chromatic effect
- shows also nonparaxial effect

* S. Yaramishev et. al.
DYNAMION: comparison for quadrupole and solenoid collimators / cone angle of 2.5°

- The real solenoid field requires a large field of 16 T.
- Symmetric focusing avoids large excursions as in quadrupoles.
- Larger distance source-solenoid reduces field, but increases chromatic effect approaching quadrupole.

Solenoid
- Requires large field of 16 T.
- Symmetric focusing avoids large excursions as in quadrupoles.
- Larger distance source-solenoid reduces field, but increases chromatic effect → approaching quadrupole.
Combined chromatic and space charge effects

production cone angle 5^0 (86 mrad) $\Delta E/E = +/-0.04$
extrapolate to 10^0 at 30 mA $\Rightarrow \varepsilon \sim 40 \pi \text{ mm mrad with } 2 \times 10^9 \text{ p (reference bunch)}$
Applied to synchrotron injection at 10 MeV

20 m debuncher drift (with focusing)
pulse length ps → 30 ns

RF bunch rotation
400 kV 10 MHz
ΔE/E 0.04 → 0.004

repeat 25 times
bunch into bucket
of 10 MHz (~70 kV)

reference p bunch:
2×10^9 p ΔE/E=+/− 0.04 from cone +/− 10° →
ε~40 π mm mrad δp/p~0.004
→ match well with space charge limit in ring !!

next at GSI (2009/10):
we plan experiment with single bunch and 2 m drift + 108 MHz bunch rotator
→ diagnose 3D phase space + efficiency to verify our modeling
Parameters: laser injector – full laser scenario

<table>
<thead>
<tr>
<th>Ion</th>
<th>(N_{\text{bunch}})</th>
<th>(N_{\text{ring}})</th>
<th>(\Delta Q_{\text{inc}}) (space charge)</th>
<th>(h)</th>
<th>(\varepsilon_{\text{final}}) (\pi) mm mrad (estimated)</th>
<th>(\delta p/p_{\text{final}}) (estimated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>(2 \times 10^9)</td>
<td>(5 \times 10^{10})</td>
<td>0.1 (1 s!!!)</td>
<td>25</td>
<td>(~10) assume 10° cone</td>
<td>(~0.001)</td>
</tr>
<tr>
<td>(C^{6+})</td>
<td>(6 \times 10^8)</td>
<td>(1.5 \times 10^{10}) every 10 s</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\text{full laser:})</td>
<td>(N_{\text{batch}})</td>
<td>(N_{\text{fraction}})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p)</td>
<td>(5 \times 10^7)</td>
<td>(5 \times 10^{10}) for 3D scanning in 10 s</td>
<td>(<10) ? assume 2.5° cone</td>
<td></td>
<td>(<0.001) linac bunch rotator: (~2-5) m length</td>
<td></td>
</tr>
</tbody>
</table>

Laser:

- \(~10\) Hz
- \(5\) Hz / \(30\) fJ
- \(~10\) Hz
- \(100\) Hz
- \(>\) PW
Conclusions

• As of today laser acceleration has a theoretical potential to compete with conventional drivers for therapy
• extremely high initial beam quality lost after collector → small "usable" fraction of total particle yield (PHELIX: "use" 3x10^{-3} of proton and 3x10^{-5} of photon yield)
• "laser injector" into synchrotron
 - should be ok (based on PHELIX data)
 - 10 Hz Petawatt laser in reach
 - hard to compete with linac technology !!
• "full energy laser" scenario lacks data
 - small cones (~2-3^0), smaller production ∆E/E (100%→10-20%)
 - >100 Hz laser systems, nm foils (problems?)
 - reproducibility, precision unknown
• New accelerator technologies take time!!